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Consider colored particle with mass
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Binding energy

inverse Bohr radius

in the early universe

we consider (perturbatively) QCD bound state way before QCD 
phase transition occurs, and its interaction with dark matter.



As an example, consider !
R-parity conserving Minimal Supersymmetric!
Standard Model (MSSM) 

Consider the R-odd lightest SUSY particle (LSP)  
as the lightest neutralino     and is the dark matter.�1
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time

comoving  
DM  

number density

equilibrium  
density n/s= constant

larger annihilation cross section -> smaller relic abundance

freeze out

Standard DM relic abundance calculation

[Kolb, Turner ’90]
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Bino?

depends on the masses of squarks & sleptons

usually bino is overproduced if sfermions are heavy



As an example, consider !
R-parity conserving Minimal Supersymmetric!
Standard Model (MSSM) 

Consider the R-odd lightest SUSY particle (LSP)  
as the lightest neutralino     and is the dark matter.

Consider     produced thermally. 

Specifically, consider LSP coannihilating 
with an almost mass-degenerate  
R-odd SUSY particle      (not necessarily the second 
lightest neutralino). Coannihilation becomes vital.
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How coannihilation works? [Griest, Seckel ’91]

�2 has large annihilation cross section with itself or

conditions:
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How coannihilation works?

�1

�2 has large annihilation cross section with itself or

conditions:

can convert to      efficiently.�2

�1

�2�2 $ SMSM �2�1 $ SMSM

�2SM $ �1SM

[Griest, Seckel ’91]



Boltzmann equations
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Boltzmann equations

dn

dt
+ 3Hn = �

2X

i,j=1

h�viij!SM

neq
i neq

j

n2
eq

�
n2 � n2

eq

�

assuming fast conversion �2SM $ �1SM

dn�

dt
+ 3Hn� = �h�vi��!SM

⇣
n2
� � neq

�
2
⌘

compare with

without coannihilation

h�vie↵call this

n ⌘ n1 + n2defining



Two limits
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We consider dark matter accompanied !
by an almost mass-degenerate colored particle.



If      is colored (squark or gluino in MSSM)!
QCD Sommerfeld effect is important
�2

�2

�2
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g

g
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g

tree-level annihilation

non-perturbative (Sommerfeld) 
effect that modifies  

the initial-state wave function

see e.g. [De Simone et al. ‘14]



If      is colored (squark or gluino in MSSM)!
formation of QCD bound state of      !
could be important as well

�2
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g̃g̃ $ R̃g, R̃ $ gg [Ellis et al. ‘15]

t̃t̃ $ ⌘̃g, ⌘̃ $ gg

for gluino

for stop

Compare recombination process e�p $ H�



If      is colored (squark or gluino in MSSM)!
formation of QCD bound state of      !
could be important as well

�2

�2

g̃g̃ $ R̃g, R̃ $ gg [Ellis et al. ‘15]

t̃t̃ $ ⌘̃g, ⌘̃ $ gg

for gluino

for stop

Compare recombination process e�p $ H�

�ann & �t̃/g̃

note: bound state formation is important only when

bound state  
annihilation rate decay rate



g̃g̃ $ R̃g, R̃ $ gg

t̃t̃ $ ⌘̃g, ⌘̃ $ gg

note that bound state annihilation removes 2 R-odd!
particles, thus helps reducing DM density

Bound!
state

gluino bound state 
!

stop bound state



call the colored particle X and bound state
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Solving the coupled Boltzmann equations

bound state number density is exponentially suppressed.  
One can set LHS to zero as an approximation.  
(the validity of this approx. has been checked numerically)
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(at temperature T < binding energy)
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Then, the Boltzmann equation is modified by adding!
the following terms:

because gluon is not energetic enough to dissociate the bound state
late-time “annihilation” is important! One needs to solve  

the Boltzmann eqs. numerically
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Calculation of bound state formation/dissociation rate



Use Coulomb approximation to describe the bound state

with

SU(3) quadratic 
casimir of  

constituent particle

SU(3) quadratic 
casimir of  

bound state

Calculation of bound state formation/dissociation rate



Use Coulomb approximation

with



H� ! e�pphotoelectric effect:

Consider photoelectric effect as an analogy
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H� ! e�pphotoelectric effect:

H =
1
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(~p+ e ~A)2Electromagnetic Hamiltonian

H ⇡ p2
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+
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m
~A · ~p

calculate the matrix h�f |
e

m
~A · ~p |�ii

Consider photoelectric effect as an analogy

bound state  
wave function

free particle 
wave function



H� ! e�pphotoelectric effect:

H =
1

2m
(~p+ e ~A)2Electromagnetic Hamiltonian

H ⇡ p2

2m
+

e

m
~A · ~p

calculate the matrix h�f |
e

m
~A · ~p |�ii

rescale with appropriate color factors

Consider photoelectric effect as an analogy



Bound state formation rate is related to the  
dissociation rate via the Milne relation  
(or principle of detailed balance)

bound state  
formation rate

bound state  
dissociation rate



scalar triplet bound state (Stoponium)

t̃t̃ ! g⌘t̃ we consider 
only the  

ground state

formation rate

dissociation rate
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Coannihilation with other types  
of colored particle



gluino coannihilation !
(with conversion taken into account appropriately)

[Ellis et al. ‘15]



[Low, Wang ‘14]

bino/stop coan. 5-sigma discovery becomes !
impossible at 100 TeV collider

previous estimate

DM mass

significance

a short comment on 100 TeV collider prospects



[Low, Wang ‘14]

bino/stop coan. 5-sigma discovery becomes !
impossible even at 100 TeV collider
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Other implications of bound-state effects: !
BBN constraints on long-lived particles
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Summary

Bound state of the colored particles can 
increase the effective annihilation cross 
section significantly

We have considered dark matter accompanied  
by an almost mass-degenerate colored particle.
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for gluino

for stop

�bsfvrel
Sann(�annvrel)

⇠ 1.4 (vrel ! 0)
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